100 research outputs found

    Adolescents’ perceptions of digital media’s potential to elicit jealousy, conflict and monitoring behaviors within romantic relationships

    Get PDF
    Understanding the role of digital media in adolescents’ romantic relationships is essential to the prevention of digital dating violence. This study focuses on adolescents’ perceptions of the impact of digital media on jealousy, conflict, and control within their romantic relationships. Twelve focus group interviews were conducted, among 55 secondary school students (ngirls = 28; 51% girls) between the ages of 15 and 18 years (Mage = 16.60 years; SD age = 1.21), in the Dutch-speaking community of Belgium. The respondents identified several sources of jealousy within their romantic relationships, such as online pictures of the romantic partner with others and online messaging with others. Adolescents identified several ways in which romantic partners would react when experiencing feelings of jealousy, such as contacting the person they saw as a threat or looking up the other person’s social media profiles. Along with feelings of jealousy, respondents described several monitoring behaviors, such as reading each other’s e-mails or accessing each other’s social media accounts. Adolescents also articulated several ways that they curated their social media to avoid conflict and jealousy within their romantic relationships. For instance, they adapted their social media behavior by avoiding the posting of certain pictures, or by ceasing to comment on certain content of others. The discussion section includes suggestions for future research and implications for practice, such as the need to incorporate information about e-safety into sexual and relational education and the need to have discussions with adolescents, about healthy boundaries for communication within their friendships and romantic relationships.</jats:p

    In Vivo Fluorescence Immunohistochemistry:Localization of Fluorescently Labeled Cetuximab in Squamous Cell Carcinomas

    Get PDF
    Anti-EGFR (epidermal growth factor receptor) antibody based treatment strategies have been successfully implemented in head and neck squamous cell carcinoma (HNSCC). Unfortunately, predicting an accurate and reliable therapeutic response remains a challenge on a per-patient basis. Although significant efforts have been invested in understanding EGFR-mediated changes in cell signaling related to treatment efficacy, the delivery and histological localization in (peri-) tumoral compartments of antibody-based therapeutics in human tumors is poorly understood nor ever made visible. In this first in-human study of a systemically administered near-infrared (NIR) fluorescently labeled therapeutic antibody, cetuximab-IRDye800CW (2.5 mg/m(2), 25 mg/m(2), and 62.5 mg/m(2)), we show that by optical molecular imaging (i.e. denominated as In vivo Fluorescence Immunohistochemistry) we were able to evaluate localization of fluorescently labeled cetuximab. Clearly, optical molecular imaging with fluorescently labeled antibodies correlating morphological (peri-) tumoral characteristics to levels of antibody delivery, may improve treatment paradigms based on understanding true tumoral antibody delivery

    Parasitic, bacterial, viral, immune-mediated, metabolic, and nutritional factors associated with Nodding syndrome

    Get PDF
    Nodding syndrome is a neglected, disabling and potentially fatal epileptic disorder of unknown aetiology affecting thousands of individuals mostly confined to Eastern sub-Saharan Africa. Previous studies have identified multiple associations – including O. volvulus, antileiomodin-1 antibodies, vitamin B6 deficiency, and measles virus infection – yet none is proven causal. We conducted a case-control study of children with early-stage Nodding syndrome (symptom onset &amp;lt;1 year). Cases and controls were identified through a household survey in the Greater Mundri area in South Sudan. A wide range of parasitic, bacterial, viral, immune-mediated, metabolic, and nutritional risk factors was investigated using conventional and state-of-the-art untargeted assays. Associations were examined by multiple logistic regression analysis and a hypothetical causal model was constructed using structural equation modelling. From 607 children with Nodding syndrome, 72 with early-stage disease were included as cases and matched to 65 household- and 44 community controls. Mansonella perstans infection (odds ratio [OR] 7.04, 95% confidence interval [CI] 2.28-21.7), Necator americanus infection (OR 2.33, 95% CI 1.02-5.3), higher antimalarial seroreactivity (OR 1.75, 95% CI 1.20-2.57), higher vitamin E concentration (OR 1.53 per standard deviation [SD] increase, 95% CI 1.07-2.19) and lower vitamin B12 concentration (OR 0.56 per SD increase, 95% CI 0.36-0.87) were associated with higher odds of NS. In a structural equation model, we hypothesized that M. perstans infection, higher vitamin E concentration and fewer viral exposures increased the risk of Nodding syndrome while lower vitamin B12 concentration, N. americanus and malaria infections resulted from having Nodding syndrome. We found no evidence that O. volvulus, antileiomodin-1 antibodies, vitamin B6 and other factors were associated with Nodding syndrome. Our results argue against several previous causal hypotheses including O. volvulus. Instead, Nodding syndrome may be caused by a complex interplay between multiple pathogens and nutrient levels. Further studies need to confirm these associations and determine the direction of effect

    A genome-wide association study of early menopause and the combined impact of identified variants

    Get PDF
    Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smokin

    Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci

    Get PDF
    Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: “Some College” (yes/no, for any education beyond high school) and “Graduated College” (yes/no, for completing a 4-year college degree). Genome-wide significant (p &lt; 5 × 10−8) and suggestive (p &lt; 1 × 10−6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.</p

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore